6 research outputs found

    Flexible High Speed Codec (FHSC)

    Get PDF
    The ongoing NASA/Harris Flexible High Speed Codec (FHSC) program is described. The program objectives are to design and build an encoder decoder that allows operation in either burst or continuous modes at data rates of up to 300 megabits per second. The decoder handles both hard and soft decision decoding and can switch between modes on a burst by burst basis. Bandspreading is low since the code rate is greater than or equal to 7/8. The encoder and a hard decision decoder fit on a single application specific integrated circuit (ASIC) chip. A soft decision applique is implemented using 300 K emitter coupled logic (ECL) which can be easily translated to an ECL gate array

    Advanced modulation technology development for earth station demodulator applications

    Get PDF
    The purpose of this contract was to develop a high rate (200 Mbps), bandwidth efficient, modulation format using low cost hardware, in 1990's technology. The modulation format chosen is 16-ary continuous phase frequency shift keying (CPFSK). The implementation of the modulation format uses a unique combination of a limiter/discriminator followed by an accumulator to determine transmitted phase. An important feature of the modulation scheme is the way coding is applied to efficiently gain back the performance lost by the close spacing of the phase points

    Use of a vital capacity maneuver to prevent atelectasis after cardiopulmonary bypass: an experimental study

    No full text
    BACKGROUND: Respiratory failure secondary to cardiopulmonary bypass (CPB) remains a major complication after cardiac surgery. The authors previously found that the increase in intrapulmonary shunt was well correlated with the amount of atelectasis. They tested the hypothesis that post-CPB atelectasis can be prevented by a vital capacity maneuver (VCM) performed before termination of the bypass. METHODS: Eighteen pigs received standard hypothermic CPB (no ventilation during bypass). The VCM was performed in two groups and consisted of inflating the lungs during 15 s to 40 cmH2O at the end of the bypass. In one group, the inspired oxygen fraction (FIO2) was then increased to 1.0. In the second group, the FIO2 was left at 0.4. In the third group, no VCM was performed (control group). Ventilation-perfusion distribution was measured with the inert gas technique and atelectasis by computed tomographic scanning. RESULTS: Intrapulmonary shunt increased after bypass in the control group (from 4.9 +/- 4% to 20.8 +/- 11.7%; P < 0.05) and was also increased in the vital capacity group ventilated with 100% oxygen (from 2.2 +/- 1.3% to 6.9 +/- 2.9%; P < 0.01) but was unaffected in the vital capacity group ventilated with 40% oxygen. The control pigs showed extensive atelectasis (21.3 +/- 15.8% of total lung area), which was significantly larger (P < 0.01) than the proportion of atelectasis found in the two vital capacity groups (5.7 +/- 5.7% for the vital capacity group ventilated with 100% oxygen and 2.3 +/- 2.1% for the vital capacity group ventilated with 40% oxygen. CONCLUSION: In this pig model, postcardiopulmonary bypass atelectasis was effectively prevented by a VCM
    corecore